1 回顾
1.1 监督学习定义:给定正确答案的机器学习算法分类:(1)回归算法:预测连续值的输出,如房价的预测(2)分类算法:离散值的输出,如判断患病是否为某种癌症1.2 非监督学习定义:不给定数据的信息的情况下,分析数据之间的关系。聚类算法:将数据集中属性相似的数据点划分为一类。2 单变量线性回归算法2.1 符号定义m = 训练样本的数量x = 输入变量y = 输出变量2.2 工作方式训练集通过学习算法生成线性回归函数hypothesis hθ(x) = θ0 + θ1x本文共 305 字,大约阅读时间需要 1 分钟。
1 回顾
1.1 监督学习定义:给定正确答案的机器学习算法分类:(1)回归算法:预测连续值的输出,如房价的预测(2)分类算法:离散值的输出,如判断患病是否为某种癌症1.2 非监督学习定义:不给定数据的信息的情况下,分析数据之间的关系。聚类算法:将数据集中属性相似的数据点划分为一类。2 单变量线性回归算法2.1 符号定义m = 训练样本的数量x = 输入变量y = 输出变量2.2 工作方式训练集通过学习算法生成线性回归函数hypothesis hθ(x) = θ0 + θ1x转载于:https://www.cnblogs.com/JJJanepp/p/8446966.html